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Abstract
We report measurements of transverse magnetoresistance where the signal can
be attributed to electron–surface scattering, together with measurements of the
surface roughness of the films on an atomic scale. The measurements were
performed with a scanning tunnelling microscope (STM) on four thin gold
films evaporated onto mica. The magnetoresistance exhibits a marked thickness
dependence: at 4 K and 9 T is about 5% for the thinner (69 nm) film, and about
14% for the thicker (185 nm) film. Sondheimer’s theory provides an accurate
description of the temperature dependence of the resistivity, but predicts a
magnetoresistance one order of magnitude smaller than that observed at 4 K.
Calecki’s theory in the limit of small roughness correlation length, predicts a
resistivity two orders of magnitude larger than observed at 4 K.

A fundamental question regarding thin metallic structures is how the roughness of the surface
that limits the structure affects electrical transport properties when one or more of the
dimensions of the structure are comparable to or smaller than the mean free path � of the
charge carriers in the bulk. Despite over a century of research on ‘size effects’ [1], the
effect of electron–surface scattering on charge transport still remains an open question. In
this paper we report measurements of transverse magnetoresistance performed on four gold
films deposited onto mica substrates, together with measurements of the surface roughness of
the samples on an atomic scale performed with a scanning tunnelling microscope (STM). The
magnetoresistance signal can be attributed to electron–surface scattering. The magnetic field
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is oriented perpendicular to the plane of the films. A preliminary report of the experimental
results reported here has been presented at a PASI [2].

In a thin metallic film, the proximity of the upper and lower rough surfaces limiting the film
should give rise to a magnetoresistance in a metal characterized by a spherical Fermi surface for
which the bulk magnetoresistance is zero, when the distance t separating the two rough surfaces
is such that t � �. The first calculation of the magnetoresistance arising from electron–surface
scattering induced by a magnetic field oriented perpendicular to the plane of a thin metallic
film was published by Sondheimer [3], who used the Boltzmann transport equation (BTE) to
describe the motion of electrons in the sample, and introduced the specularity of the surface as
an adjustable parameter (representing the fraction of electrons that are specularly reflected upon
colliding with the rough surface). This calculation was improved by Calecki, who used BTE
but represented electron–surface scattering in terms of a perturbation Hamiltonian (describing
the perturbation induced by the rough surfaces over and above the Hamiltonian describing an
electron gas confined between two parallel flat surfaces) [4]. Although several theories of size
effects (in the absence of a magnetic field) have been published during the last decade (to men-
tion a few, see [5–7] and references therein), theories of magnetomorphic effects on metallic
samples published after Calecki’s work are rather scarce [8, 9]. There are also only a few ex-
perimental investigations of magnetomorphic effects on non-magnetic metallic films published
subsequent to Calecki’s work [10–15]. Concerning theories of magnetoresistance, Calecki’s
work appears to be the only formalism available that predicts magnetomorphic effects in thin
metallic films in terms of parameters that characterize the roughness of the surface that can
be measured in an independent experiment with a STM. Since Calecki’s theory has remained
untested, performing both magnetoresistance as well as surface roughness measurements on
the same set of samples promises to be interesting, for it should allow comparison between
theory and experiment regarding size effects without using adjustable parameters.

To be able to observe ‘size effects’, the samples have to be such that the resistivity arising
from electron-scattering mechanisms other than rough surfaces does not mask the effect of
electron–surface scattering. Van Attekum and co-workers [16] report that the resistivity of
gold films evaporated onto polished Pyrex and silicon substrates held at room temperature was
found to decrease by about one order of magnitude upon annealing the samples. Transmission
electron microscope (TEM) studies proved that the decrease in resistivity upon annealing was
correlated to a marked increase in the lateral dimension characterizing the grains making up the
sample. Based upon this work, we prepared over 50 gold films of the same thickness (70 nm),
growing the films at 3 nm min−1 but changing the substrate and annealing temperature between
−190 and 270 ◦C. We found the conditions of evaporation that minimize the concentration of
defects (that minimize deviations of the morphology and structure of the films with respect to a
thin slice of a single crystal): a minimum ρ(295) is obtained when the substrate and annealing
temperature are between 180 and 270 ◦C.

We prepared films of different thickness, starting from 99.9999% pure gold evaporated
at 3 nm min−1 from a tungsten basket filament onto freshly cleaved mica substrates in a
HV evaporation chamber (vacuum of 1.0 × 10−5 Pa). Masks were prepared such that an
evaporation run yielded four samples for each thickness. The mica was preheated to 270 ◦C
and the films were annealed for 1 h at 270 ◦C after evaporation. The films exhibit a room-
temperature resistivity ρ(295) a few per cent in excess of the resistivity of 22.5 n�m expected
from electron–phonon scattering, the electron scattering mechanism dominant in high-purity
crystalline gold at 295 K [17]. The excess resistivity ranges from 5% for the thickest (185 nm),
to 30% for the thinnest (69 nm) sample.

To rule out structural defects that could give rise to a magnetoresistance signal, we
determined the morphology and structure of the samples via x-ray diffraction (XRD),
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Rutherford back scattering (RBS), TEM and STM. The diffractogram of the muscovite mica
substrate reveals a base-centred monoclinic structure with a = 0.5209 nm, b = 0.9072 nm
and c = 2.0063 nm, with α = γ = 90◦ and β = 95.715◦. The diffractogram of the
gold samples reveals a fcc lattice with a lattice constant a = 0.407 86 nm. The atoms in
the (a, b) plane of the monoclinic structure are surrounded by six nearest neighbours arranged
in an almost perfect hexagon, suggesting that gold atoms occupy the centre of gravity of the
triangles that make up the basal hexagon, separated by a distance of 0.301 nm. This distance is
only 4% larger than the separation between the six nearest neighbour gold atoms on the 〈111〉
plane of the fcc lattice. The diffractogram of each film yielded a peak at 2θ = 38.314◦, that
corresponds to the 〈111〉 reflection of gold. The intensity of the x-ray signal recorded by the
diffractometer in the θ–2θ mode is comparable to that recorded in the rocking-curve mode. We
conclude that the samples are made up of grains that grew oriented such that direction 〈111〉
is perpendicular to the surface of the mica [18]. The thickness of the samples was measured
(to an accuracy of 5%) by recording the RBS spectra of 2 MeV alpha particles from a Van
de Graaff accelerator. We measured the grain size of some 50–100 grains from samples of
different thickness, using TEM. The average lateral dimensions of the grains turned out to be
167 ± 19, 240 ± 24, 255 ± 28 and 290 ± 41 nm in the 69, 93, 150 and 185 nm samples,
respectively. We measured the parameters (δ, ξ ) corresponding to a Gaussian representation of
the roughness profile f (x, y) = δ2 exp[−(x2 + y2)/ξ 2] (where (x, y) represent the in-plane
coordinates) from 25 to 30 images (10 nm × 10 nm, containing 256 × 256 pixels each) of the
surface of the films recorded with a STM, following the method published [18]. The result is
(0.17 nm, 10.9 nm), (0.17 nm, 10.1 nm), (0.16 nm, 12.2 nm) and (0.29 nm, 7.65 nm), in the 69,
93, 150 and 185 nm samples, respectively.

The magnetoresistance was measured using the four-point method, injecting a current of
1.3 mA and 210 Hz across terminals A–B (figure 1), and measuring the voltage drop across
terminals E–G (figure 1) by means of SR-830 lock-in amplifiers. The samples were inserted
into a copper block in a superconducting magnet, the temperature of which was maintained
within ±0.1 K. The resistivity at 4 K was 7.01, 4.72, 3.27 and 2.14 n� m on the 69, 93, 150
and 185 nm samples, respectively. At 4 K and 9 T, the Hall voltage, measured simultaneously,
indicates that the product ωCτ (where ωC = q B/m is the cyclotron frequency, τ is the average
time between collisions) ranges between 0.14 and 0.45. Cooling to 4 K decreases the resistivity
of the films by one order of magnitude, leading to a ρ(4) that differs by at least a factor of three
between the thinnest and thickest film, in spite of the fact that the corresponding ρ(295) do not
differ by more than 30%. At 4 K electron–phonon scattering is frozen out. Since the average
lateral dimension of the grains is larger than the film thickness in all samples, at 4 K the mean
free path is dominated by electron–surface or electron–grain boundary scattering.

The dependence of the magnetoresistance on the magnetic field B observed at different
temperatures is shown in figure 1. The magnetoresistance signal exhibits a remarkable
thickness dependence, that (given the small variation of the lateral grain dimensions between
samples of different thickness) suggests electron–grain boundary scattering must be ruled out
as an explanation. The increase of about 14% observed at 4 K and 9 T in the 185 nm sample
is unexpected; it seems surprisingly large. It is reminiscent of the nonlinear dependence of the
magnetoresistance that has been reported on a 110 nm film of CoSi2 measured at 4.2 K and 9 T.
However, the observed increase reported in CoSi2 is only about 1.5%; it was attributed to the
presence of two types of carriers, electrons and holes [19].

On theoretical grounds, using BTE it has been shown that a crystalline metal characterized
by a spherical Fermi surface exhibits a null magnetoresistance, both when E ‖ B and when
E ⊥ B [20], where E and B are the electric and magnetic fields, respectively. In crystalline
noble metals such as gold, departures of the Fermi surface from a perfect sphere give rise to a



3404 R C Munoz et al

Figure 1. Dependence of the transverse magnetoresistance on the magnetic field B , at different
temperatures T (4, 10, 20, 30, 40, 50 K), indicated in the figure. Squares: film 185 nm. Circles:
film 150 nm. Triangles: film 93 nm. Inverted triangles: film 69 nm. The inset in the lowest rightmost
panel indicates the shape of the sample. Dimensions of the rectangular centre section of the sample
are 2.5 mm × 11.0 mm; terminals E and G are 7.0 mm apart.

magnetoresistance different from zero [20]. As the origin of the observed magnetoresistance,
we are led to consider either:

(a) the morphology of the Fermi surface, e.g. departures of the Fermi surface of gold from a
perfect sphere, or

(b) the morphology of the films, e.g. the proximity of the rough surfaces limiting the film to
within a distance t � �.

Concerning the first possibility (a), let E = (Ex, Ey, 0),B = (0, 0, B) and the
current density J = (Jx , Jy, 0). The transverse magnetoresistance is �ρ/ρ = [ρxx (B) −
ρxx (0)]/ρxx (0), where ρ is the tensor relating E and J: E = ρ J. The electron trajectory in
reciprocal k-space is defined by the intersection of a plane perpendicular to B, and the surfaces
of constant energy ε(k) [21]. Since the Fermi surface of gold exhibits a neck around direction
〈111〉—the direction along which the magnetic field is oriented—the electron motion in the
gold films ought to involve at least two extremal orbits: (i) orbits where the plane perpendicular
to B cuts the Fermi surface around its belly and (ii) orbits where it cuts the Fermi surface at one
of its necks.

The simplest phenomenological model involving extremal orbits is a two-carrier model,
characterized by (n1,m1, τ1, µ1) and (n2,m2, τ2, µ2), where ni stands for the carrier density,
mi for its effective mass, τi for the average time between collisions,µi = qτi/mi for the carrier
mobility and q is the electron charge. The two-carrier Drude model leads to
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Figure 2. Dependence of the transverse magnetoresistance on the magnetic field B at 4 K, symbols
as in figure 1. Fitting the two-carrier Drude model to the magnetoresistance data (corresponding to
each film thickness) leads to the mobility µ1 indicated in the figure, in units of (T)−1.

�ρ

ρ
= µ1µ2 B2α (µ1 − µ2)

2

(αµ2 + µ1)
2 + (µ1µ2 B)2 (α + 1)2

where the label 1 indicates neck orbits and the label 2 indicates belly orbits perpendicular to
the direction 〈111〉, with α = n2/n1. We estimate α ≈ (4πR2/(2 ×πr 2) ≈ 58, where R is the
radius of the Fermi sphere of gold and r is the radius of one of its necks [21]. The expression
for �ρ/ρ depends on µ1, µ2 and B . Since α � 1, µ2(T ) was obtained from the Hall voltage
measured on each sample at temperature T , leaving only µ1(T ) as a free parameter. We least
square fitted the magnetoresistance data at 4 K using µ1(4) as the adjustable parameter; the
result of the fit is shown in figure 2. The fit is quite poor, the curvature of the magnetoresistance
as a function of magnetic field B is opposite from what is observed for the 150 and 185 nm film,
and the fitting parameter µ1 turns out to increase monotonically with increasing film thickness:
µ1 for the 185 nm film turns out to be about 3.4 times larger than µ1 for the 69 nm film.

The starting assumption of this two-carrier Drude model is that the mobilities of the
different carriers depend only on the curvature of the extremal orbits and on the average
collision time that characterizes electron scattering in the bulk, and are independent of the
thickness of the sample. Yet an analysis of the magnetoresistance and resistivity data leads
to collision times τ1 and τ2 that increase monotonically with increasing film thickness. We
conclude that the collision times are somehow determined by electron–surface scattering. We
are thus led to consider possibility (b), that the magnetoresistance arises from electron–surface
scattering.

The magnetoresistance predicted by Sondheimer, can be calculated from

�ρ

ρ
= ϕ(s, B = 0)Reϕ(s, B �= 0)

|ϕ(s, B �= 0)|2 − 1

where s = κ + iβ is a complex variable, and Reϕ(s) stands for the real part of the complex
quantity ϕ(s). Here κ(T ) = t/�(T ) (notice that �(T ) stands for the electron mean free path
at temperature T in the absence of electron–surface scattering), and β = t/r0 (r0 is the radius
of the cyclotron orbit) [3]. Setting B = 0 leads to ρ(T ) = ρ0(T )/[κ(T )ϕ(s, B = 0)], where
ρ0(T ) is the bulk resistivity described by a Bloch–Grüneisen law [17]. However, Sondheimer
considered a metal film limited by two rough surfaces characterized by the same specularity.
Since the lower surface is cleaved mica, which is atomically flat except for cleavage steps,
the gold–mica interface ought to behave as a specular surface [18], therefore the roughness
of the upper gold surface is expected to dominate the resistivity induced by electron–surface
scattering. Instead of adopting the form for ϕ(s) proposed by Sondheimer [3], we computed
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Figure 3. (a) Temperature dependence of the resistivity for films of different thickness, symbols as
in figure 1. Solid line: prediction of the Sondheimer–Lucas theory, with P = 1 and Q = 0. The
term (1/τ )IMP was adjusted to describe ρ(4) for each sample; the corresponding value of κimp = t/�
(at 4 K) is indicated in the figure. (b) Magnetic field dependence of the magnetoresistance at 4 K
predicted by Sondheimer–Lucas.

ϕ(s) numerically, using the form proposed by Lucas [22]:

ϕ(s) = 1

s
− 3

4s2

∫ ∞

1

(
1

t3
− 1

t5

)

× (1 − exp(−st))
[
2 − P − Q + (P + Q − 2P Q) exp(−st)

]
1 − P Q exp(−2st)

dt

where we set P = 1 to characterize the reflectivity of the mica. The fitting parameters left in
the theory are Q (the specularity of the upper gold surface) and κ(T ).

To test Sondheimer’s theory quantitatively we need to determine κ(T ), and to do so we
must evaluate �(T ) at each temperature T . �(T ) is determined by the relaxation time τ (T ) in
the bulk, that varies with temperature according to 1/τ = (1/τ)IMP+(1/τ)PHON, where the first
(temperature-independent) term accounts for electron scattering by impurities and the second
(temperature-dependent) term accounts for electron–phonon scattering [17]. For each sample
we selected a value for the parameter Q, and adjusted (1/τ)IMP to describe either ρ(4) or
(�ρ/ρ)(4), neglecting (1/τ)PHON at 4 K. To compute 1/τ at T > 4 K, we added to (1/τ)IMP

the corresponding (1/τ)PHON computed from the Bloch–Grüneisen intrinsic resistivity listed
on page 1209 of [17]. We repeated this procedure for different values of Q. The best fit
to the temperature dependence of the resistivity data was obtained for Q = 0, as shown in
figure 3. The unexpected result is that, if (1/τ)IMP is adjusted to fit ρ(4), then the Sondheimer–
Lucas theory provides a fair description of the temperature dependence of the resistivity of
each sample as shown in figure 3(a), but the predicted magnetoresistance at 4 K turns out to be
an order of magnitude too small (figure 3(b)). If (1/τ)IMP is adjusted to fit (�ρ/ρ)(4) rather
than ρ(4), then theory does not describe appropriately either the magnetic field dependence of
the magnetoresistance for the two thicker films at 4 K or the temperature dependence of the
resistivity in any of the films.

In the case of Calecki’s theory, the author introduced an electron distribution function
fν(k) = f0(ενk) + φν(k) (equation (11) in [4]) for electrons occupying each subband with
an energy ενk = h̄2(k2 + k2

ν)/2m, where k = (kx , ky) represents the in-plane momentum,
kν = νπ/t represents the quantized momentum along z, φν(k) represents a linear function in E
and f0(ενk) represents the equilibrium Fermi–Dirac distribution function. In this work, Calecki
set up a BTE for fν(k), and proved that, in the presence of a magnetic field, the Boltzmann
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collision operator describing electron–rough surface scattering cannot be characterized by a
relaxation time τ unless νF = n (where νF is the number of occupied subbands). For this reason
the author introduced the matrix T (ε)νν′ with dimensions of time, defined by equation (22)
from [4]. The magnetoresistance predicted by theory can be calculated in terms of T (ε)νν′

from
�ρ

ρ
= (σ0 − σ2)σ0

(σ0 − σ2)2 + σ 2
1

− 1

where σ0, σ1 and σ2 are given by

σ0 =
∑
ν

nνq2

m

∑
ν′

〈T (ε)νν′ 〉ν

σ1 = ωC

∑
ν

nνq2

m

∑
ν′

〈{[1 + ω2
C T 2(ε)]−1T 2(ε)}νν′

〉
ν

σ2 = ω2
C

∑
ν

nνq2

m

∑
ν′

〈{[1 + ω2
C T 2(ε)]−1T 3(ε)}νν′

〉
ν

(equations (32)–(34) from [4]), where nν is the density of states of subband ν, and 〈ψ〉 indicates
the average of ψ over the occupied subbands.

Although the formulae for calculating σ0, σ1 and σ2 requires computing the matrix T
(involving hundreds of elements T (ε)νν′ for each sample), in the limit of small correlation
lengths (e.g. kξ < 1, where ξ is the roughness correlation length), T (ε)νν′ becomes diagonal,
for in this case electron–surface scattering causes the distribution function fν(k) to relax
towards the Fermi–Dirac distribution function f0(ενk) with a ‘relaxation time’ τν associated
with subband ν, given by

Tνν′ (εF) = δνν′
m

π5h̄

6t6

νF(νF + 1)(2νF + 1)

1

δ2ξ 2ν2
= τν(εF) (1)

(equation (64) from [4]) and δ is the r.m.s. roughness amplitude. Using this notation, the
effect of the Boltzmann collision operator describing electron–phonon and electron–impurity
scattering can be characterized by a single relaxation time (τ )PHON and (τ )IMP that are
independent of the subband label ν, since the scattering rates corresponding to these scattering
processes (present in the bulk) are independent of the thickness of the sample. In the presence
of electron–phonon and electron–impurity scattering, the total scattering rate corresponding to
subband ν, should be computed by adding the scattering rates corresponding to each of the
three processes acting separately, electron–impurity + electron–phonon + electron–surface
scattering, (1/τ)IMP + (1/τ)PHON + (1/τν).

However, the resistivity ρ0 = (σ0)
−1 predicted at 4 K arising solely from electron–surface

scattering, characterized by the ‘relaxation time’ τν(εF) given by equation (1) above, turns
out to be about two orders of magnitude larger than observed. It is not clear whether such
discrepancy arises from an overestimation of the effect of electron–surface scattering within
the theory, or is rather a consequence of the approximation kξ < 1 used to derive the diagonal
form for the matrix Tνν′ (εF) = τν(εF) given by equation (1), an approximation which is far
from being fulfilled in our samples. To elucidate the origin of this discrepancy we have to solve
the transport equations numerically, computing the matrix T (ε)νν′ for each sample. Such work
is in progress.

Summarizing, we have measured the magnetoresistance�ρ of gold films evaporated onto
mica substrates at low temperatures and high magnetic fields, and have measured the surface
roughness of the samples with an STM having atomic resolution. The magnetoresistance
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exhibits a marked thickness dependence, which points to the dominant role played by electron–
rough surface scattering. A model consisting of an electron gas composed of two types of
carriers that ignores electron–surface scattering does not explain the thickness dependence of
the data. Such a model constitutes a gross oversimplification, since the importance of electron–
surface scattering is completely neglected. The magnetoresistance data qualitatively confirm
Sondheimer’s predictions made over 50 years ago. Sondheimer’s theory predicts accurately the
temperature dependence of the resistivity ρ(T ), but predicts at 4 K a magnetoresistance which
is an order of magnitude smaller than that observed. Calecki’s theory (under the approximation
kξ < 1) predicts a resistivity arising from electron–surface scattering that is two orders of
magnitude larger than observed at 4 K. The question remains open of whether such discrepancy
arises as a consequence of the small roughness correlation length approximation (kξ < 1,
certainly not valid in our samples) used by the author to derive the diagonal form for the matrix
T (ε)νν′ or arises because theory overestimates electron–surface scattering.
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